South East Asian J. Math. & Math. Sc. Vol.2 No.1(2003), pp.25-30

## A FIXED POINT THEOREM FOR THREE MAPPINGS

## D. Gopal and A. S. Ranadive

Department of Mathematics and Statistics Guru Ghasidas University, Bilaspur-495001, India

(Received: April 29, 2003; Submitted by R.Y. Denis)

**Abstract:** In this paper two fixed point theorems for three mappings have been proved.

**Keywords and Phrases:** Self maps, common fixed point, complete metric space.

## 1. Introduction

A well known Banach contraction principle states that a contraction mappings on a complete metric space has a unique fixed point. Jaggi and Das [1] in 1980 gave an extension of Banach fixed point theorem through a rational expressions. This result was generalized by Murthy and Sharma [2] in 1991. In this paper, we prove two fixed point theorems for three self mappings.

## 2. Main Results

We establish the following theorems:

**Theorem 1.** Let E, F and T be the three self maps of a complete metric space (X, d) satisfying the following conditions:

- (a) (E,T) and (F,T) are commuting pairs.
- (b)  $EX \subset TX$ ,  $FX \subset TX$ .
- (c) There exist integers r, s > 0 such that

$$d(E^rx, F^sy) \ \leq \ \frac{K.d(Tx, E^rx).d(Ty, F^sy)}{d(Ty, F^sy) + d(Ty, E^rx)}$$

for every  $x, y \in X$  and 0 < K < 1.

Then E,F and T have a unique common fixed point in X, provided T is continuous.